# AI Trading Journey > 90-day experiment building an autonomous AI trading system. Real failures, real fixes, real lessons learned. ## Quick Summary - **Phase**: R&D Day 50/90 - **Mode**: Paper Trading (no real money) - **Goal**: Fibonacci compounding ($1/day scaling) - **Stack**: Python, Alpaca API, Claude AI, PyTorch ## Daily Reports - [Latest Report](https://igorganapolsky.github.io/trading/reports/): Most recent daily P/L and trade analysis - [Performance Log](https://github.com/IgorGanapolsky/trading/blob/main/data/performance_log.json): Raw JSON performance data ## Lessons Learned - [All Lessons](https://igorganapolsky.github.io/trading/lessons/): 60+ documented failures and fixes - [Critical Lessons](https://github.com/IgorGanapolsky/trading/tree/main/rag_knowledge/lessons_learned): Markdown source files ## Trading Strategies - **5-Tier Strategy**: MACD + RSI + RL + Sentiment + Risk Management - **Asset Classes**: US Equities and Options (NO crypto) - **Market Hours**: Mon-Fri 9:30 AM - 4:00 PM ET only ## Key Metrics - Win Rate Target: >60% - Sharpe Ratio Target: >1.5 - Max Drawdown Limit: -5% - Position Size: Kelly Criterion with 25% safety margin ## Risk Management - Circuit breakers for rapid loss prevention - Position limits per symbol and strategy - Volatility-adjusted sizing - Pre-trade risk assessment ## Repository - [GitHub](https://github.com/IgorGanapolsky/trading): Full source code - [Dev.to Series](https://dev.to/igorganapolsky): Blog posts and updates ## Contact - Author: Igor Ganapolsky - CTO: Claude AI (autonomous execution) - Twitter: @igorganapolsky --- *Educational purposes only. Not financial advice.*